CCSS fo Ma hem	a ic : S a i ic and P⁄obabili	Elemen a/ Sai ic, Page N mbe/		
	a. Fit a function to the data; use	Using a Regression Line to Make a Prediction:		
	functions fitted to data to solve	Chapter 10, p. 693-694		
	problems in the context of the data.	Example 3, p. 694		
	Use given functions or choose a	Non-Linear Relationships: Chapter 10, p. 695		
	function suggested by the context.	Example 4, p. 695-697		
	Emphasize linear, quadratic, and	Example 5, p. 697-698		
	exponential models.	Practice 10-2, p. 702-703, 1-15		
	b. Informally assess the fit of a	Residual Plots: Chapter 10, p. 712		
	function by plotting and analyzing	Example 2, p. 712-713		
	residuals.	Example 3, p. 714		
	c. Fit a linear function for a scatter	Regression Line Equation: Chapter 10, p. 689-		
	plot that suggests a linear	690		
	association.	Example 1, p. 691-692		
		Example 2, p. 692		
		Practice 10-2, p. 702-703, 6-15		
In e/p/e ing Ca ego/ical and Q an i a i e Da a (S-ID)				
Interpret linear	7. Interpret the slope (rate of change)	Statistics All Around Us: Use Statistics Chapter		
models	and the intercept (constant term)	10, p. 694-695		
	of a linear model in the context of the	Exercising Care When Using Regression		
	data.	Chapter 10, p. 698		
		Applying the Concepts 10-2, p. 701		
	8. Compute (using technology) and	Using Technology Correlation and Regression		
	interpret the correlation coefficient	Chapter 10, p. 704-708		
	of a linear fit.			
	9. Distinguish between correlation and	4		

causation.

CCSS for Ma hema ic : S a i ic and Probabili

Make inferences and justify conclusions from sample surveys, experiments, and observational studies

3. Recognize the purposes of and differences among sample surveys, experiments, and observational studies; explain how randomization relates to each.

Elemen a Sai ic , Page N mbe

Surveys: Chapter 11, p.756- 757, p. 761-763 Observational Studies: Chapter 1, p.28 Experimental Studies: Chapter 1, p. 29-30 Factors that Can Affect the Outcome of a Study: Chapter 1, p. 30-31

Drawing Conclusions: Chapter 1, p. 31-33 Applying Concepts 1-4, Chapter 1, p.36

Practice 1-4, p. 37, 7, 8

CCSS fo Ma hema ic : S a i ic and Robabili
Unde and 4. Construct and interpret tw

Elemen a/Sai ic, Page N mbe/

independence and condi ional p obabili and e hem o in expeda a (con 'd)

4. Construct and interpret two-

CCSS for Ma hema ic : S a i ic and Probabili

Elemen a Sai ic, Page N mbe

U e he le of pobabili o comp e pobabili ie of compo nd e en in a nifo/m pobabili model

CCSS fo/ Ma hema ic : S a i ic and P/obabili Elemen a/ S a i ic , Page N mbe/

Calc la e

e pec ed al e